In machine learning, generative adversarial networks (GANs) involve two artificial neural networks squaring off, one, the generator, trying to delude the other, the discriminator, into accepting synthetic data as real. Beyond their science and engineering applications, GANs can generate utterly convincing “photographs” of people who do not exist.
Unrestricted use on a wide scale of electronic health records (EHRs) for biomedical or health services research is precluded by patient privacy considerations. Simulated EHRs could help speed discovery.
In a study in the Journal of the American Medical Informatics Association, Chao Yan, Ziqi Zhang, Bradley Malin, and colleagues use GANs to generate “electronic health records” of patients who do not exist.
Source: Read Full Article